Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
MMWR recomm. rep ; 62(45): 1-12, 20231115. tab
Artigo em Inglês | BIGG - guias GRADE | ID: biblio-1512652

RESUMO

Inactivated Vero cell culture-derived Japanese encephalitis vaccine (JE-VC [manufactured as IXIARO]) is the only JE vaccine licensed and available in the United States. JE-VC is manufactured by Intercell Biomedical (Livingston, United Kingdom) and distributed in the United States private market by Novartis Vaccines (Cambridge, Massachusetts). In March 2009, FDA licensed JE-VC for use in adults aged ≥17 years. ACIP recommendations for use of JE-VC in adults were approved in June 2009 and booster dose recommendations were approved in February 2011 [CDC 2010; CDC 2011]. There are no efficacy data for JE-VC. However, a JE virus 50% plaque reduction neutralization test (PRNT50) titer of ≥10 is an established immunologic correlate of protection [Markoff 2000; Hombach 2005]. JE-VC was licensed based on its ability to induce neutralizing antibodies and a non-inferiority comparison to a licensed inactivated mouse brain-derived JE vaccine (JE-MB [manufactured as JE-VAX]). Since JE-VC was licensed in 2009, >375,000 doses have been distributed in the United States for use in adults. In May 2013, FDA approved JE-VC for use in children aged 2 months through 16 years [FDA 2013]. The FDA-approved primary series for JE-VC is two intramuscular doses administered 28 days apart. For children aged 2 months through 2 years each dose is 0.25mL and for adults and children aged ≥3 years each dose is 0.5mL. The ACIP JE Vaccine Workgroup evaluated the evidence for use of JE-VC in children using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methods [Ahmed 2011]. The workgroup developed a policy question, identified outcomes of critical importance, performed a systematic review of the available data, and evaluated evidence of benefits, harms, values, and preferences for use of JE vaccine in U.S. children.


Assuntos
Humanos , Criança , Adolescente , Células Vero/virologia , Encefalite Japonesa/imunologia , Vacinas contra Encefalite Japonesa/uso terapêutico
2.
PLoS One ; 17(3): e0265453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333910

RESUMO

Several SARS-CoV-2 variants emerged that harbor mutations in the surface unit of the viral spike (S) protein that enhance infectivity and transmissibility. Here, we analyzed whether ten naturally-occurring mutations found within the extended loop harboring the S1/S2 cleavage site of the S protein, a determinant of SARS-CoV-2 cell tropism and pathogenicity, impact S protein processing and function. None of the mutations increased but several decreased S protein cleavage at the S1/S2 site, including S686G and P681H, the latter of which is found in variants of concern B.1.1.7 (Alpha variant) and B.1.1.529 (Omicron variant). None of the mutations reduced ACE2 binding and cell-cell fusion although several modulated the efficiency of host cell entry. The effects of mutation S686G on viral entry were cell-type dependent and could be linked to the availability of cathepsin L for S protein activation. These results show that polymorphisms at the S1/S2 site can modulate S protein processing and host cell entry.


Assuntos
Polimorfismo Genético/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Animais , Chlorocebus aethiops , Células HEK293/virologia , Humanos , Immunoblotting , Células Vero/virologia
3.
Microbiol Spectr ; 10(1): e0127121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171025

RESUMO

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.


Assuntos
COVID-19/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Pulmão/metabolismo , Nucleocapsídeo/análise , SARS-CoV-2 , Adolescente , Idoso , Animais , COVID-19/patologia , Pré-Escolar , Chlorocebus aethiops , Surtos de Doenças , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Pulmão/citologia , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Nucleocapsídeo/metabolismo , Coelhos , SARS-CoV-2/ultraestrutura , Células Vero/virologia
4.
Drug Discov Ther ; 15(5): 268-272, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34707021

RESUMO

The inhibitory activity of electrolyzed reduced water (ERW) against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is the etiological agent responsible for coronavirus disease 2019 (COVID-19), was tested in vitro on Vero E6 cells using a plaque assay. Infectious virus titers of cells treated with ERW 100%, 50% and 33.3% solutions and phosphate buffered saline (PBS, negative control) and exposed to the virus suspension for 60 seconds were 2.25, 2.65, 3.21 and 7.38, respectively. ERW has a high pH and low surface tension. It is considered that the alkaline property of ERW breaks down phospholipids and proteins of envelopes. The role of pH and reducibility on the virucidal effect of ERW should be further evaluated. This study provides a foundation for utilizing ERW as an effective antiviral aqueous solution in a variety of applications.


Assuntos
Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Água/farmacologia , Animais , Chlorocebus aethiops , Concentração de Íons de Hidrogênio , Células Vero/virologia , Ensaio de Placa Viral
5.
Molecules ; 26(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071102

RESUMO

Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 µM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.


Assuntos
Vírus da Dengue/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Dengue/tratamento farmacológico , Vírus da Dengue/metabolismo , Desoxiadenosinas/metabolismo , Simulação de Acoplamento Molecular , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Células Vero/virologia , Proteínas não Estruturais Virais/metabolismo
6.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980675

RESUMO

Human coronavirus (HCoV)-OC43 rarely shows a cytopathic effect (CPE) after infection of various cell lines, and the indirect immunoperoxidase assay (IPA), a relatively complex procedure, has long been used as an alternative assay. Because HCoV-OC43 uses cell-surface transmembrane protease serine 2 (TMPRSS2) for cell entry, VeroE6 cells expressing TMPRSS2 may show a clear CPE after HCoV-OC43 infection. The aim of this study was to construct a 50% tissue culture infectious dose (TCID50) assay for HCoV-OC43 based on CPE evaluation using VeroE6/TMPRSS2 cells. VeroE6/TMPRSS2 cells showed clear CPEs 3 to 4 days after low-titer HCoV-OC43 infection. Evaluation of viral kinetics indicated that the viral titer in the culture supernatant of VeroE6/TMPRSS2 cells in the early stages of infection was higher than that of other cells. In comparison, between the CPE-based and the IPA-based (i.e., the reference titer) methods, the titer measured with CPE evaluation 4 to 5 days after infection using VeroE6/TMPRSS2 cells showed a much smaller difference from the reference titer than that measured using other cells. Thus, the TCID50 assay using CPE evaluation with VeroE6/TMPRSS2 cells provides the correct titer value and will greatly contribute to future research on HCoV-OC43.IMPORTANCE HCoV-OC43 rarely shows a cytopathic effect (CPE) in infected cell lines, and thus the plaque and TCID50 assays by CPE observation are not applicable for titration; the indirect immunoperoxidase assay (IPA) is used instead. However, the IPA is relatively complex, time-consuming, costly, and not suitable for simultaneous titration of many samples. We developed a TCID50 assay using CPE evaluation with TMPRSS2-expressing VeroE6/TMPRSS2 cells that provides the same accuracy as the conventional IPA-based viral titration and does not require any staining procedures using antibodies or substrates. This titration method will greatly contribute to future research on HCoV-OC43 by allowing simple, low-cost, and accurate titration of this virus.


Assuntos
Coronavirus Humano OC43/fisiologia , Efeito Citopatogênico Viral , Receptores Virais/metabolismo , Serina Endopeptidases/metabolismo , Carga Viral/métodos , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Coronavirus Humano OC43/isolamento & purificação , Humanos , Técnicas Imunoenzimáticas , Receptores Virais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Células Vero/virologia , Cultura de Vírus , Internalização do Vírus , Replicação Viral
7.
Hum Pathol ; 114: 110-119, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961839

RESUMO

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although viral infection is known to trigger inflammatory processes contributing to tissue injury and organ failure, it is unclear whether direct viral damage is needed to sustain cellular injury. An understanding of pathogenic mechanisms has been handicapped by the absence of optimized methods to visualize the presence and distribution of SARS-CoV-2 in damaged tissues. We first developed a positive control cell line (Vero E6) to validate SARS-CoV-2 detection assays. We then evaluated multiple organs (lungs, kidneys, heart, liver, brain, intestines, lymph nodes, and spleen) from fourteen COVID-19 autopsy cases using immunohistochemistry (IHC) for the spike and the nucleoprotein proteins, and RNA in situ hybridization (RNA ISH) for the spike protein mRNA. Tissue detection assays were compared with quantitative polymerase chain reaction (qPCR)-based detection. SARS-CoV-2 was histologically detected in the Vero E6 positive cell line control, 1 of 14 (7%) lungs, and none (0%) of the other 59 organs. There was perfect concordance between the IHC and RNA ISH results. qPCR confirmed high viral load in the SARS-CoV-2 ISH-positive lung tissue, and absent or low viral load in all ISH-negative tissues. In patients who die of COVID-19-related organ failure, SARS-CoV-2 is largely not detectable using tissue-based assays. Even in lungs showing widespread injury, SARS-CoV-2 viral RNA or proteins were detected in only a small minority of cases. This observation supports the concept that viral infection is primarily a trigger for multiple-organ pathogenic proinflammatory responses. Direct viral tissue damage is a transient phenomenon that is generally not sustained throughout disease progression.


Assuntos
COVID-19/patologia , Fígado/virologia , Pulmão/virologia , SARS-CoV-2/patogenicidade , Animais , Autopsia/métodos , COVID-19/virologia , Chlorocebus aethiops , Progressão da Doença , Humanos , Imuno-Histoquímica/métodos , Fígado/química , Fígado/patologia , Pulmão/patologia , RNA Viral/metabolismo , Células Vero/virologia , Carga Viral/métodos
8.
J Med Virol ; 93(9): 5603-5607, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33851749

RESUMO

It has been estimated that individuals with COVID-19 can shed replication-competent virus up to a maximum of 20 days after initiation of symptoms. The majority of studies that addressed this situation involved hospitalized individuals and those with severe disease. Studies to address the possible presence of SARS-CoV-2 during the different phases of COVID-19 disease in mildly infected individuals, and utilization of viral culture techniques to identify replication-competent viruses, have been limited. This report describes two patients with mild forms of the disease who shed replication-competent virus for 24 and 37 days, respectively, after symptom onset.


Assuntos
COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/crescimento & desenvolvimento , Cultura de Vírus , Animais , Chlorocebus aethiops , Feminino , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/patogenicidade , Células Vero/ultraestrutura , Células Vero/virologia , Carga Viral , Eliminação de Partículas Virais
9.
PLoS One ; 16(4): e0250516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891631

RESUMO

Zika virus is a Flavivirus, transmitted via Aedes mosquitos, that causes a range of symptoms including Zika congenital syndrome. Zika has posed a challenging situation for health, public and economic sectors of affected countries. To quantitate Zika virus neutralizing antibody titers in serum samples, we developed a high throughput plate based Zika virus reporter virus particle (RVP) assay that uses an infective, non-replicating particle encoding Zika virus surface proteins and capsid (CprME) and a reporter gene (Renilla luciferase). This is the first characterization of a Zika virus RVP assay in 384-well format using a Dengue replicon Renilla reporter construct. Serially diluted test sera were incubated with RVPs, followed by incubation with Vero cells. RVPs that have not been neutralized by antibodies in the test sera entered the cells and expressed Renilla luciferase. Quantitative measurements of neutralizing activity were determined using a plate-based assay and commercially available substrate. The principle of limiting the infection to a single round increases the precision of the assay measurements. RVP log10EC50 titers correlated closely with titers determined using a plaque reduction neutralization test (PRNT) (R2>95%). The plate-based Zika virus RVP assay also demonstrated high levels of precision, reproducibility and throughput. The assay employs identical reagents for human, rhesus macaque and mouse serum matrices. Spiking studies indicated that the assay performs equally well in different species, producing comparable titers irrespective of the serum species. The assay is conducted in 384-well plates and can be automated to simultaneously achieve high throughput and high reproducibility.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Animais , Anticorpos Bloqueadores/imunologia , Linhagem Celular , Chlorocebus aethiops/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/patogenicidade , Flavivirus/isolamento & purificação , Flavivirus/patogenicidade , Genes Reporter/genética , Genes Reporter/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Macaca mulatta/imunologia , Macaca mulatta/virologia , Camundongos , Testes de Neutralização , Células Vero/virologia , Vírion/genética , Vírion/isolamento & purificação , Zika virus/genética , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
10.
Sci Rep ; 11(1): 6746, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762624

RESUMO

Polio or poliomyelitis is a disabling and life-threatening disease caused by poliovirus (PV). As a consequence of global polio vaccination efforts, wild PV serotypes 2 and 3 have been eradicated around the world, and wild PV serotype 1-transmitted cases have been largely eliminated except for limited regions. However, vaccine-derived PV, pathogenically reverted live PV vaccine strains, has become a serious issue. For the global eradication of polio, the World Health Organization is conducting the third edition of the Global Action Plan, which is requesting stringent control of potentially PV-infected materials. To facilitate the mission, we generated a PV-nonsusceptible Vero cell subline, which may serve as an ideal replacement of standard Vero cells to isolate emerging/re-emerging viruses without the risk of generating PV-infected materials.


Assuntos
Poliovirus/fisiologia , Células Vero/virologia , Tropismo Viral , Sequência de Aminoácidos , Animais , Sequência de Bases , Técnicas de Cultura de Células , Células Cultivadas , Chlorocebus aethiops , Saúde Global , Humanos , Poliomielite/epidemiologia , Poliomielite/virologia , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Replicação Viral , Organização Mundial da Saúde
11.
BMC Vet Res ; 17(1): 93, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639955

RESUMO

BACKGROUND: Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). RESULTS: Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). CONCLUSIONS: This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


Assuntos
Reatores Biológicos , Vírus da Doença Nodular Cutânea/crescimento & desenvolvimento , Vírus da Peste dos Pequenos Ruminantes/crescimento & desenvolvimento , Vírus da Febre do Vale do Rift/crescimento & desenvolvimento , Animais , Células Cultivadas/virologia , Chlorocebus aethiops , Ovinos , Células Vero/virologia , Cultura de Vírus/instrumentação , Cultura de Vírus/métodos
12.
Mem Inst Oswaldo Cruz ; 116: e200443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33566951

RESUMO

BACKGROUND: The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. OBJECTIVE: The objective of this paper is study the biology of SARS-CoV-2 in Vero-E6 cells at the ultrastructural level. METHODS: In this study, we documented, by transmission electron microscopy and real-time reverse transcription polymerase chain reaction (RT-PCR), the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. FINDINGS: The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. MAIN CONCLUSIONS: Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Assuntos
Efeito Citopatogênico Viral , Vesículas Citoplasmáticas/virologia , SARS-CoV-2/fisiologia , Células Vero/virologia , Animais , Chlorocebus aethiops , Endocitose , Retículo Endoplasmático/virologia , Humanos , Microscopia Eletrônica de Transmissão , Nucleocapsídeo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Internalização do Vírus
13.
PLoS Pathog ; 17(1): e1009212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465165

RESUMO

Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.


Assuntos
COVID-19/prevenção & controle , Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops/virologia , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero/virologia , Tratamento Farmacológico da COVID-19
14.
Basic Clin Pharmacol Toxicol ; 128(4): 621-624, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33232578

RESUMO

Since the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019, no vaccine has been approved to counter this infection and the available treatments are mainly directed against the immune pathology caused by the infection. The coronavirus disease 2019 (COVID-19) is currently causing a worldwide pandemic, pointing the urgent need for effective treatment. In such emergency, drug repurposing presents the best option for a rapid antiviral response. We assess here the in vitro activity of nilotinib, imatinib and dasatinib, three Abl tyrosine kinase inhibitors, against SARS-CoV-2. Although the last two compounds do not show antiviral efficacy, we observe inhibition with nilotinib in Vero-E6 cells and Calu-3 cells with EC50s of 1.44 µM and 3.06 µM, respectively. These values are close to the mean peak concentration of nilotinib observed at steady state in serum, making this compound a potential candidate for treatment of COVID-19 in vivo.


Assuntos
Antivirais/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Dasatinibe/farmacologia , Relação Dose-Resposta a Droga , Humanos , Mesilato de Imatinib/farmacologia , Técnicas In Vitro , Células Vero/virologia
15.
Mem. Inst. Oswaldo Cruz ; 116: e200443, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1154874

RESUMO

BACKGROUND The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. OBJECTIVE The objective of this paper is study the biology of SARS-CoV-2 in Vero-E6 cells at the ultrastructural level. METHODS In this study, we documented, by transmission electron microscopy and real-time reverse transcription polymerase chain reaction (RT-PCR), the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. FINDINGS The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. MAIN CONCLUSIONS Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Assuntos
Humanos , Animais , Células Vero/virologia , Vesículas Citoplasmáticas/virologia , Efeito Citopatogênico Viral , SARS-CoV-2/fisiologia , Chlorocebus aethiops , Nucleocapsídeo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microscopia Eletrônica de Transmissão , Endocitose , Retículo Endoplasmático/virologia , Internalização do Vírus , Reação em Cadeia da Polimerase em Tempo Real
17.
PLoS Pathog ; 16(10): e1008900, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33052961

RESUMO

Multiple cell surface molecules including TAM receptors (TYRO3, AXL, and MERTK), a family of tyrosine kinase receptors, can serve as attachment receptors for Ebola virus (EBOV) entry into cells. The interaction of these receptors with EBOV particles is believed to trigger the initial internalization events that lead to macropinocytosis. However, the details of how these interactions lead to EBOV internalization have yet to be elucidated. Here, we screened receptor tyrosine kinase (RTK) inhibitors for anti-EBOV activity by using our previously established biologically contained Ebola virus that lacks the VP30 gene (EBOVΔVP30) and identified several RTKs, including human epidermal growth factor receptor 2 (HER2), as potential targets of anti-EBOV inhibitors and as novel host factors that have a role in EBOV infection. Of these identified RTKs, it was only HER2 whose knockdown by siRNAs impaired EBOVΔVP30-induced AKT1 phosphorylation, an event that is required for AKT1 activation and subsequent macropinocytosis. Stable expression of HER2 resulted in constitutive activation of AKT1, resulting in the enhancement of EBOVΔVP30 growth, EBOV GP-mediated entry, and macropinocytosis. Moreover, we found that HER2 interacts with the TAM receptors, and in particular forms a complex with TYRO3 and EBOVΔVP30 particles on the cell surface. Interestingly, HER2 was required for EBOVΔVP30-induced TYRO3 and AKT1 activation, but the other TAM receptors (TYRO3 and MERTK) were not essential for EBOVΔVP30-induced HER2 and AKT1 activation. Our findings demonstrate that HER2 plays an important role in EBOV entry and provide novel insights for the development of therapeutics against the virus.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Receptor ErbB-2/metabolismo , Internalização do Vírus , Animais , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Células Vero/virologia , Internalização do Vírus/efeitos dos fármacos
18.
EMBO J ; 39(23): e106267, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051876

RESUMO

Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2-infected cells express the Spike protein (S) at their surface and fuse with ACE2-positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS-CoV-2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.


Assuntos
COVID-19/patologia , Células Gigantes/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Células Gigantes/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero/virologia
19.
Indian J Med Res ; 152(1 & 2): 70-76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32773420

RESUMO

BACKGROUND & OBJECTIVES: The genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belonging to the family Coronaviridae, encodes for structural, non-structural, and accessory proteins, which are required for replication of the virus. These proteins are encoded by different genes present on the SARS-CoV-2 genome. The expression pattern of these genes in the host cells needs to be assessed. This study was undertaken to understand the transcription pattern of the SARS-CoV-2 genes in the Vero CCL-81 cells during the course of infection. METHODS: Vero CCL-81 cells were infected with the SARS-CoV-2 virus inoculum having a 0.1 multiplicity of infection. The supernatants and cell pellets were harvested after centrifugation at different time points, post-infection. The 50% tissue culture infective dose (TCID50)and cycle threshold (Ct) values of the E and the RdRp-2 genes were calculated. Next-generation sequencing of the harvested sample was carried out to observe the expression pattern of the virus by mapping to the SARS-CoV-2 Wuhan HU-1 reference sequence. The expressions were in terms of the reads per kilobase million (RPKM) values. RESULTS: In the inital six hours post-infection, the copy numbers of E and RdRp-2 genes were approximately constant, which raised 10 log-fold and continued to increase till the 12 h post-infection (hpi). The TCID50 was observed in the supernatant after 7 hpi, indicating the release of the viral progeny. ORF8 and ORF7a, along with the nucleocapsid transcript, were found to express at higher levels. INTERPRETATION & CONCLUSIONS: This study was a step towards understanding the growth kinetics of the SARS-CoV-2 replication cycle. The findings indicated that ORF8 and ORF7b gene transcripts were expressed in higher amounts indicating their essential role in viral replication. Future studies need to be conducted to explore their role in the SARS-CoV-2 replication.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Pneumonia Viral/genética , Transcriptoma/genética , Animais , Betacoronavirus/patogenicidade , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero/virologia , Replicação Viral/genética
20.
Biotechnol Lett ; 42(12): 2551-2560, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32816175

RESUMO

Fixed-bed bioreactors packed with macrocarriers show great potential to be used for vaccine process development and large-scale production due to distinguishing features of low shear force, high cell adhering surface area, and easy replacement of culture media in situ. As an initial step of utilizing this type of bioreactors for Pseudorabies virus production (PRV) by African green monkey kidney (Vero) cells, we developed a tube-fixed-bed bioreactor in the previous study, which represents a scale-down model for further process optimization. By using this scale-down model, here we evaluated impacts of two strategies (use of serum-free medium and low cell inoculum density) on PRV production, which have benefits of simplifying downstream process and reducing risk of contamination. We first compared Vero cell cultures with different media, bioreactors and inoculum densities, and conclude that cell growth with serum-free medium is comparable to that with serum-containing medium in tube-fixed-bed bioreactor, and low inoculum density supports cell growth only in this bioreactor. Next, we applied serum-free medium and low inoculum cell density for PRV production. By optimization of time of infection (TOI), multiplicity of infection (MOI) and the harvesting strategy, we obtained total amount of virus particles ~ 9 log10 TCID50 at 5 days post-infection (dpi) in the tube-fixed-bed bioreactor. This process was then scaled up by 25-fold to a Xcell 1-L fixed-bed bioreactor, which yields totally virus particles of 10.5 log10 TCID50, corresponding to ~ 3 × 105 doses of vaccine. The process studied in this work holds promise to be developed as a generic platform for the production of vaccines for animal and human health.


Assuntos
Reatores Biológicos , Contagem de Células , Herpesvirus Suídeo 1/genética , Células Vero/virologia , Animais , Chlorocebus aethiops/genética , Chlorocebus aethiops/crescimento & desenvolvimento , Meios de Cultura/química , Meios de Cultura/farmacologia , Herpesvirus Suídeo 1/crescimento & desenvolvimento , Cultura de Vírus/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...